首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   2篇
化学工业   11篇
金属工艺   4篇
冶金工业   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2000年   1篇
排序方式: 共有18条查询结果,搜索用时 62 毫秒
1.
Due to the limited temperature capability of current YSZ thermal barrier coating (TBC) material, considerable effort has been expended world-wide to research new candidates for TBC applications above 1200?°C. Our study suggested that Sc2O3 and Y2O3 co-doped ZrO2 (ScYSZ) had excellent t’ phase stability even after annealed at 1500?°C for 336?h. The thermal expansion coefficient of ScYSZ was comparable to the value of YSZ. The thermal conductivity of fully dense ScYSZ was in the range of 2.13–1.91?W?m?1?K?1 (25–1300?°C), approximately 25% lower than that of YSZ. Although the fracture toughness of dense ScYSZ was slightly lower than YSZ, an evident decline in elastic modulus was found. Additionally, thermal cycling lifetime of plasma sprayed ScYSZ coating (914 cycles) at 1300?°C was about 2.6 times longer than its YSZ counterpart. The superior comprehensive properties confirm that ScYSZ is a prospective candidate material for high-temperature TBC application.  相似文献   
2.
Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8, 0.7) ceramics were prepared by solid state reaction sintering. The sintered Sr1.0(Zr0.9Y0.05Yb0.05)O2.95 is a single-phase solid solution while the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9?0.7) are composites, and a significant grain growth inhibition is observed in the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9). Rare-earth elements distribution in the bulk materials indicates that Yb and Y preferentially substitute Zr-sites in SrZrO3, and the highest solubility of RE2O3 in pure SrZrO3 is ~0.8 mol%. The sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x have high thermal expansion coefficients up to ~11.0×10?6 K-1 (1200°C). Sr0.8(Zr0.9Y0.05Yb0.05)O2.75 has the lowest thermal conductivity of 1.38 W·m-1·K-1 at 800°C. Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) show no phase transition from 600 to 1400°C, whereas Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9, 0.8) have excellent high-temperature phase stability over the whole investigated temperature range. Therefore, Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) are considered as promising TBCs materials that might be operated at higher temperatures compared to YSZ.  相似文献   
3.
In this work, the corrosion behavior, interaction products, and the corrosion mechanism of (1-x)SrZrO3-xLa2Ce2O7(x = 0.3, S7L3; x = 0.5, S5L5; x = 0.7, S3L7) composite bulks after CaO-MgO-Al2O3-SiO2 (CMAS) attack at 1250°C for 1, 4, and 12 h were investigated, respectively. The molten CMAS and the bulks rapidly interacted and generated a dense reaction layer, which mainly composed of La-Ce apatite, Ce2Zr2O7.04, ZrO2 with some Ce, Ca, Si, Mg, and Al elements preventing CMAS from continuous penetration effectively. The formation of CMAS self-crystallizing products such as Ca2Al2SiO7 gehlenite and Mg-Al spinel with high melting points increased the viscosity of CMAS. The elements in the ceramic also diffused into the molten CMAS and formed Ce2Zr2O7.04 and La2Ce2O7, increasing the melt viscosity and blocking the penetration channel of the molten CMAS. The S5L5 bulk has the best corrosion resistance against CMAS attacks.  相似文献   
4.
Nanocrystals of pure zirconia and yttria stabilized zirconia (YSZ) are obtained by a simple chemical synthesis route using sucrose, polyvinyl alcohol (PVA) and metal nitrates. The reaction mixture on pyrolysis and calcination gives nanocrystals. These are characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The size of the nanocrystallites for pure zirconia is in the range of about 7.0–45.0 nm and for yttria stabilized zirconia, is in the range of about 5.0–24.0 nm at 200°C and above, according to the preparative condition. At 200°C, pure zirconia forms cubic phase and this cubic phase is stable up to 600°C and then slowly transformed into monoclinic form. For yttria stabilized zirconia, the crystals are tetragonal in the temperature range from 200 to 1200°C.  相似文献   
5.
直流等离子喷枪是等离子喷涂系统中最为核心的部件,决定了粒子的熔融软化沉积效果和涂层性能。总结 了阴极、阳极 ( 喷嘴 ) 和气体分配环等关键部件的结构特征对等离子射流的影响。进一步介绍了直流等离子喷枪 的结构优化发展,重点从等离子体射流稳定性和涂层沉积效率提升等角度进行阐述,介绍了级联等离子喷枪对射 流稳定性的优化,以及送粉方式对涂层沉积效率的提升,并展望了未来的发展趋势。  相似文献   
6.
研究了等离子喷涂不同结构YSZ涂层在CMAS渗入作用下的形貌演变规律。对带有模拟CMAS沉积物的YSZ涂层进行高温热处理试验,并在低CMAS输送量条件下对YSZ涂层进行冲刷试验,试验后涂层均出现了严重的层间剥离失效。通过试验前后涂层的截面形貌及Raman光谱分析,结果表明:涂层的显微形貌变化主要表现在高温下熔融态CMAS沿涂层表面微裂纹和孔隙渗入内部,引起YSZ陶瓷层孔隙收缩、表层致密化,同时在涂层表面粘附的CMAS耦合作用下,YSZ涂层表层中产生大量横向微裂纹和明显分层;另外,YSZ涂层表层在CMAS中溶解并导致YSZ加速相变失稳也是影响涂层形貌变化和过快失效的因素之一。CMAS沉积层厚度增加时,同等条件下CMAS对涂层失效的影响会加剧。  相似文献   
7.
Crystalline yttria and calcia doped ceria powder, with a composition of Ce0.8Y0.18Ca0.02O2?δ has been prepared by a coprecipitation procedure from the corresponding nitrates of component cations. Nanopowder was obtained after thermal treatment at 700 °C 2 h of the coprecipitated mixtures. Specific surface area was 45 m2/g. Isostatically and uniaxially pressed pellets were prepared from the powder. Sintering behaviour was followed by CHR dilatometer. Isothermal sintering was carried out between 1100 and 1300 °C. Apparent density as high as 98% Dth was attained by firing isostatically pressed pellets at 1150 °C 4 h. Uniaxially pressed pellets attained the same apparent density at 1275 °C 2 h, being in both cases very low the densification temperatures. Microstructure was observed by scanning electron microscopy (SEM). Ionic conductivity was determined by complex impedance spectroscopy. Bulk and grain boundary conductivities have similar values, and the total conductivity attains good value compatible with the use as electrolyte in solid oxide fuel cell (SOFC).  相似文献   
8.
《Ceramics International》2019,45(14):17376-17381
Air plasma sprayed (APS) 8 wt%-yttria stabilized zirconia (8YSZ) with metastable tetragonal prime phase (t′) has been widely applied as thermal barrier coatings (TBCs) for gas turbine blades because of its outstanding mechanical properties at high temperatures. In the present research, a carefully designed process was used to prepare 8YSZ samples with different phase composition (t′, t and c) simulating the phase degradation of the material during operation conditions. High temperature (1000–1200 °C) bending strength, elastic modulus, and thermal expansion coefficient were measured, which exhibit strong dependence on the phase degradation during heat treatment. Effect of the phase composition on high temperature thermo-mechanical properties and the enhancement of the bending strength have been discussed, providing a new perspective for further improvements.  相似文献   
9.
In this study, two composition ZrB2–ZrC–WB composites were synthesized by reactive hot-pressing of Zr + B4C + WC powder mixtures at 1900 °C. The microstructure of the resulting composites was characterized by a combination of scanning electron microscopy and X-ray diffraction. It is seen that highly-dense ZrB2–ZrC–WB composites with a homogenous fine-microstructure were obtained after the sintering. The mechanical behavior of the composites was evaluated using by testing under four-point bend testing at room and high temperatures. The results show that the high-temperature strength of the ZrB2–ZrC–WB composites was substantially improved, compared to ZrB2–ZrC-based composites without WB. In addition, the elastic properties, electrical conductivity, hardness and fracture toughness of the composites were measured at room temperature. The results reveal that these properties were comparable to those of ZrB2–ZrC-based composites without WB.  相似文献   
10.
Y2SiO5 is a promising candidate for oxidation-resistant or environmental/thermal barrier coatings (ETBC) due to its excellent high-temperature stability, low elastic modulus and low oxygen permeability. In this paper, we investigated the thermal properties of Y2SiO5 comprehensively, including thermal expansion, thermal diffusivity, heat capacity and thermal conductivity. It is interesting that Y2SiO5 has a very low thermal conductivity (~1.40 W/m K) but a relatively high linear thermal expansion coefficient ((8.36 ± 0.5) × 10?6 K?1), suggesting compatible thermal and mechanical properties to some non-oxide ceramics and nickel superalloys as ETBC layer. Y2SiO5 is also an ideal EBC on YSZ TBC layer due to their close thermal expansion coefficients. As a continuous source of Y3+, it is predicted that Y2SiO5 EBC may prolong the lifetime of zirconia-based TBC by stopping the degradation aroused by the loss of Y stabilizer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号